
Beyond	Worst-Case	Adversaries	
in	Machine	Learning	

Nika	Haghtalab,	UC	Berkeley

Based	on	joint	work	with	Tim	Roughgarden and	Abhishek	Shetty

Data	is	generated	by	an	all-powerful	
adaptive	adversary,	who	knows	the	
algorithm	and	history.

Successful	if	it	gets	good	performance	over	
adversarially generated	data.

If	successful,	then	it’s	going	to	be	robust	to	
any	misspecifications	or	attacks.

ML	Algorithmic	Guarantees

Data	is	generated	stochastically	from	a	
fixed	distribution

Learner	learn	a	function	using	the	data

Successful	if	it	gets	good	performance	
over	the	underlying	distribution.

Not	concerned	with	robustness	or	what	
happens	if	the	world	were	to	change.

Stochastic	or	Offline Adversarial,	Robust,	or	Online

Importance	of	Robustness

Increased	interactions	between	learning	algorithms	
and	people	requires	robust	learning	guarantees.	

Need	new	models	to	guide	the	design	of	learning	
algorithms	that	are	robust	to	day-to-day	adversaries.

Get	essentially	the	same	performance	guarantees	for	the	learner	
against	these	adversaries,	as	you	could	in	the	stochastic	world.	

Instance is	generated	by	an	all-powerful	
adaptive	adversary,	who	knows	the	
algorithm	and	history.

Successful	if	it	can	find	a	good	solution	
even	for	the	worst-case	instance.

Algorithm	Design	and	Analysis

Instance is	generated	stochastically	
from	a	fixed	distribution

Algorithm computes	a	solution.

Successful	if	it	is	a	good	solution	in	
expectation	over	the	distribution.

Average-Case	Analysis Worst-Case	Analysis

Idea	[Spielman	&	Teng	01]:

• Adversary	chooses	and	instances,	then	nature	slightly	perturbs	it,	e.g.,	Gaussian.
• Goal:	For	any	instance,	perform	well	in	expectation/w.h.p over	the	perturbations.
Modern	perspective:	
• Adversary	chooses	a	distribution	over	instances.	The	distribution	has	to be	“sufficiently	
anti-concentrated”.	

• Goal:	For	any	“anti-concentrated”	distribution,	perform	well	in	expectation/w.h.p.
When	is	it	useful?	When	the	worst-case	instances	are	“brittle”

Ideally:
• We	can	get	essentially	same	performance	guarantees	as	in	the	average-case	for	the	
smoothed	adversaries.		

Smoothed	Analysis:	Basic	Idea

Average-Case	Analysis Worst-Case	AnalysisSmoothed	AnalysisAverage-Case	Analysis Worst-Case	AnalysisSmoothed	Analysis

Running	time	of	simplex	method	[Spielman	&	Teng	01,	Deshpande	&	Spielman	05,	…]

• Simplex	can	take	exponential	time	for	worst-case	instances

• Simples	takes	polynomial	time	in	expectation	when	the	Gaussian	variance	is	≥ 1/𝑝𝑜𝑙𝑦(𝑛)

Running	time	of	local	search	methods:

• Lloyd	algorithm	for	k-means,	2-OPT	heuristic	for	TSP,	take	exponential	number	of	iteration	
in	worst	case,	but	polynomial	in	the	smoothed	case.

Machine	learning	(Information	+	Computation)

• Even	what	is	“learnable”	depends	on	the	model	of	the	adversary.

• Fundamental	application	of	smoothed	analysis

Smoothed	Analysis:	Past,	Present,	Future

Unknown	threshold	function	𝑎 :	𝑥 ≥ 𝑎 is	labeled	+,	and	𝑥 < 𝑎 is	labeled	−.
• Algorithm	has	to predict	labels	of	adaptively	and	adversarially selected	points.

Algorithm	is	forced	to	make	a	mistake	at	every	round.
• 𝑇 mistakes	over	𝑇 instances.

Worst-Case	Adversaries	in	Learning	(Online)

1/2

1/4 3/4

1/8 5/83/8 7/8

𝑦 = −1𝑦 = 1

1 −1

1

−11

1 1 1−1 −1 −1 −1

The	label	adversary	
claims	is	the	real	one	

Algorithm’s	prediction

Algorithm Adversary

Adversary

Consistent	threshold	𝑎

Algorithm

Unknown	threshold	𝑎 :
• Larger	point	are	positive,	and	smaller	point	are	negative.
• Algorithm	has	to predict	labels	of points	drawn	from	a	distribution.

Stochastic	“Adversaries”	in	Learning	(Offline)

Algorithm:	Let	𝜖 = 𝑇.
First	*

+
rounds,	predict	however	you	like.	(≤ *

+
= 𝑇mistakes	up	to	here.)

Then	take	any	S𝑎 that	is	consistent	with	the	data,	predict	+ if	x ≥ S𝑎 and	− if	x < S𝑎.
Claim:	≤ 𝜖 total	prob	in	|𝑎 − S𝑎|
• After *

+
rounds,	for	any	𝑎′ that’s	more	than	𝜖 in	total	probability	away	from	𝑎,	we	would	

have	seen	a	point	with	opposite	label.
Claim:	≤ 𝑇 additional	mistakes,	because	𝜖𝑇 = 𝑇.

𝑎 8𝑎
𝜖𝜖

+−

Offline	Learning:	Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Algorithm	makes	a	mistake	if	𝑓, 𝑥, ≠ 𝑦, .
Goal:	Get	𝑜(𝑇) regret.

As	𝑇 → ∞,	avg	number	of	mistakes	Alg makes	is	no	worst	than	the	best	predictor.		

Formal	Setup:	Offline	and	Online	Learning

REGRET = &
!"#

$

1 𝑓! 𝑥! ≠ 𝑦! − min
%∈'

&
!"#

$

1 ℎ 𝑥! ≠ 𝑦!Alg’s #	of	mistakes
#	of	Mistakes	the	best	

ℎ ∈ 𝐻 makes,
in	hindsight

Learner	picks	prediction	rule	𝑓, ∶ 𝑋 →
𝑌 ,	not	necessarily	deterministic.

The	world	picks	 𝑥, , 𝑦, ∼ 𝐷

Offline	Learning:	Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Algorithm	makes	a	mistake	if	𝑓, 𝑥, ≠ 𝑦, .
Goal:	Get	𝑜(𝑇) regret.

As	𝑇 → ∞,	avg	number	of	mistakes	Alg makes	is	no	worst	than	the	best	predictor.		

Formal	Setup:	Offline	and	Online	Learning

REGRET = &
!"#

$

1 𝑓! 𝑥! ≠ 𝑦! − min
%∈'

&
!"#

$

1 ℎ 𝑥! ≠ 𝑦!

Learner	picks	prediction	rule	𝑓, ∶ 𝑋 →
𝑌 ,	not	necessarily	deterministic.

The	world	picks	 𝑥, , 𝑦, ∼ 𝐷

Online	Learning

Adversary	picks	 𝑥, , 𝑦, ,	knowing	the	
history	for	1,… , 𝑡 − 1 and	the	algorithm

There	is	a	function	class	𝐻 and	domain	𝑋 (𝑋 ⊆ 𝑅D has	finite	Lebesgue	measure)
At	round	𝑡

Formal	Setup:	Smoothed	Analysis	of	Online	Learning

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌 ,	
not	necessarily	deterministic.

Adversary	picks	a	𝜎-smooth	
distribution	𝐷! knowing	the	history	for	
1,… , 𝑡 − 1 and	the	algorithm

𝜎-smooth	distribution:	max	density	is	≤ E
F×uniform density on	𝑋

Adversary	picks	an	
instance	(𝑥̅! , 8𝑦!).

(𝑥̅!, N𝑦!) randomly	perturbs	to	(𝑥(, 𝑦!)

Modern	perspective	on	smoothness	(more	general	for	finite	lebesgue measure	𝑋)

There	is	a	function	class	𝐻 and	domain	𝑋 (𝑋 ⊆ 𝑅D has	finite	Lebesgue	measure)
At	round	𝑡

Algorithm	makes	a	mistake	if	𝑓, 𝑥, ≠ 𝑦, .
Goal:	Get	𝑜(𝑇) regret.

As	𝑇 → ∞,	avg	number	of	mistakes	Alg makes	is	no	worst	than	the	best	predictor.		

Formal	Setup:	Smoothed	Analysis	of	Online	Learning

REGRET = &
!"#

$

1 𝑓! 𝑥! ≠ 𝑦! − min
%∈'

&
!"#

$

1 ℎ 𝑥! ≠ 𝑦!

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌 ,	
not	necessarily	deterministic.

Adversary	picks	a	𝜎-smooth	
distribution	𝐷! knowing	the	history	for	
1,… , 𝑡 − 1 and	the	algorithm

𝜎-smooth	distribution:	max	density	is	≤ #
)
×uniform density on	𝑋

The	Landscape
Online	Learning	Regret Perturbation

Online	Learning	
(Worst-Case)

;Θ Ldim(H) 𝑇
;Θ log(H) 𝑇

No	perturbation
𝝈 = 𝟎

Offline	learning	or	
Uniform	Case

;Θ VCDim(H) 𝑇 Maximum	perturbation
𝝈 = 𝟏

Interpreted	as	an	impossibility	result,	because	VCDim ≪ Ldim
à For	simple	classes,	Ldim = ∞ (and	log H = ∞)	but	VCDim = 1.

Theorem [H.,	Roughgarden,	Shetty	‘21]
In	presence	of	Adaptive	but	Smooth	Adversaries	the	regret	is	yΘ VCDim(H) 𝑇 ln 1/𝜎

H is	learnable	with	under	smoothed	analysis	if	and	only	if	H is	learnable	on	a	uniform	distribution.

We	could	approximate	H that’s	potentially	infinite,	with	a	finite	H′.

Why	did	the	Stochastic	Case	Work?

ℎ ℎ"#$%&
𝜖

Infinitely	many	ℎ Δℎ"#$%& ,	but	because	instances	are	i.i.d we	can	take	union	bound	over	them.

Regret for ℋ ≤ Approx Error +
max# points in ℎ Δℎ"#$%&

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ'| regret
𝐻 𝐻′

Approx	Error	is	small:	Performance	of	any	ℎ ∈ 𝐻 is	close	to	the	performance	of	corresponding	ℎ*+,-. ∈ 𝐻′
Anti-Concentration:	
Not	too	many	points	fall	in	any	ℎ Δℎ"#$%&

The	Net:	For	each	ℎ ∈ 𝐻 there	is	ℎ-./01 ∈ 𝐻′,	where	the	total	density	in	ℎ Δℎ-./01 is	small.

We	could	approximate	H that’s	potentially	infinite,	with	a	finite	H′.

What	went	wrong	for	the	online	case?

ℎ ℎ"#$%&
𝜖

Infinitely	many	ℎ Δℎ"#$%& ,	but	because	instances	are	i.i.d we	can	take	union	bound	over	them.

Regret for ℋ ≤ Approx Error +
max# points in ℎ Δℎ"#$%&

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ'| regret
𝐻 𝐻′

Approx	Error	is	small:	Performance	of	any	ℎ ∈ 𝐻 is	close	to	the	performance	of	corresponding	ℎ*+,-. ∈ 𝐻′
The	adversary	can	concentrate	:	
too	many	points	fall	in	any	ℎ Δℎ"#$%&

The	Net:	For	each	ℎ ∈ 𝐻 there	is	ℎ-./01 ∈ 𝐻′,	where	the	total	density	in	ℎ Δℎ-./01 is	small.

How	do	we	preserve
anti-concentration when	a	
sequence	of	smooth	distributions	
are	adaptively	chosen?

Broad	Question

Each	𝜎-smooth	distribution	is	anti-
concentrated.

The	challenge	is	correlations	between	
these	smooth	distributions.

Challenge

Probability	Couplings:
• We	have	two	or	more	distributions	𝑋 and	𝑍.	
• A	coupling	is	a	joint	distribution	on	𝑋×𝑍 that	connects	them,	so	that	there	is	a	“nice	property”	
between	the	draws	(𝑥, 𝑧).

Couple	Adaptive	Smoothness	with	Uniformity

Ideally,	we	want	to	couple	random	variables	from	a	sequence	of	smooth	distributions	
𝐷*, 𝐷2, … , 𝐷3 with	draws	from	a	uniform	distribution.

“Nice	Property”:	
• 𝑋*, … , 𝑋3 drawn	from	𝐷*, 𝐷2, … , 𝐷3 are	a	subset	of	𝑍*, … , 𝐷43 drawn	from	uniform	
distribution.

A	Good	Coupling
Theorem [H.,	Roughgarden,	Shetty	‘21]
For	any	adaptive	sequence	of	𝑇 distributions,	there	is	a	coupling	between:
1. (𝑋*, … , 𝑋3) ∼ (𝐷*, 𝐷2, … , 𝐷3)
2. 𝑍*… , 𝑍34 ∼ 𝑈𝑛𝑖𝑓 and	independent	and	𝑘 ≈ 1/𝜎.
3. With	high	prob.	𝑋*, … , 𝑋3 ⊆ 𝑍*… , 𝑍34

Uniform	distribution	is	not	“concentrated”.	So,	𝑋*, … , 𝑋3 ⊆ 𝑍*… , 𝑍34 aren’t	either.
• I	want	to	say	that	no	ℎ Δℎ-./01 includes	too	many	𝑋*, … , 𝑋3 .
• Sufficient	to	say	no	ℎ Δℎ-./01 includes	too	many	𝑍*… , 𝑍34 .
• 𝑍*… , 𝑍34 are	i.i.d and	guaranteed	to	be	scattered.

Adaptive	smoothed	adversaries	can’t	be	much	worst	than	stochastic	adversaries	(on	a	slightly	
longer	time	scale).

Overview	of	the	Main	Results
Theorem [H.,	Roughgarden,	Shetty	‘20]
In	presence	of	Adaptive	but	Smooth	Adversaries	the	regret	is	yΘ VCDim(H) 𝑇 ln 1/𝜎

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ"#$%&

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ'| regret
𝐻 𝐻′

Step	1:	Choose	H′ that	is	a	finite	approximation	of	H

How	do	we	select	H′?	
• Take	H′ that	such	that	𝑥 ∼ Unif ,	i.e.,	Pr5 a point falls in ℎ Δℎ-./01 ≤ 𝜖.
• Works	nicely	for	𝜎-smooth	distributions	too:

𝔼6 #points in ℎ Δℎ-./01 ≤ 𝑇𝜖/𝜎.

Overview	of	the	Main	Results

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ"#$%&

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ'| regret
𝐻 𝐻′

Step	2:	Apply	the	coupling

Step	1:	We	got	that	𝔼V #points in ℎ ΔℎWXYZ[≤ 𝑇𝜖/𝜎.

Approx	Error

Approx Error
max
7∈9

points ∼ 𝐷*, …D:
fall in ℎ Δℎ-./01

≤
Approx Error

max
7∈9

points ∼ 𝑈𝑛𝑖𝑓
fall in ℎ Δℎ-./01

“Nice	Property”:	𝑋#, … , 𝑋$ drawn	from	𝐷#, 𝐷/, … , 𝐷$ are	a	subset	of	𝑍#, … , 𝐷0$ drawn	from	uniform	
distribution.

Overview	of	the	Main	Results

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ"#$%&

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ'| regret
𝐻 𝐻′

Approx Error
max
7∈9

points ∼ 𝐷*, …D:
fall in ℎ Δℎ-./01

≤
Approx Error

max
7∈9

points ∼ 𝑈𝑛𝑖𝑓
fall in ℎ Δℎ-./01

Step	3:	Bound	the	Approx Error	for	the	uniform	distribution.
No	concerns	about	the	adversary	and	robustness.	Just	the	classical	stuff!
VC	dimension	uses	i.i.d uniform	r.v. to	show	that	approx.	error	is	small.

Step	1:	We	got	that	𝔼V #points in ℎ ΔℎWXYZ[≤ 𝑇𝜖/𝜎.

Step	2:	Apply	the	coupling

We	want	to	be	robust	over	T interactions	with	an	
adaptive	smooth	adversary.

Classical	algorithms	and	analysis	from	the	
stochastic	case	can	be	lifted	and	be	use	with	
smoothed	adaptive	adversaries

Main	Message

Smoothed	Analysis	of	Adaptive	Adversaries
Get	essentially	the	same	performance	guarantees	for	the	algorithm	against	an	

adversary,	as	you	could	in	the	stochastic	world.	

Ideal	Results

Reducing	interactions	with	smooth	adaptive	adversary	to	the	stochastic	world.
Getting	rid	of	the	worst	aspect	of	being	adversarial.

Smoothed	Analysis	of	Adaptive	Adversaries
Get	essentially	the	same	performance	guarantees	for	the	algorithm	against	an	

adversary,	as	you	could	in	the	stochastic	world.	

Ideal	Results

Recipe:	Smoothed	Analysis	with	Adaptive	Adversaries	

1. Solve	the	problem	for	the	uniform	case.
1. Isolate	and	identify	the	the	steps	that	rely	on	anti-concentration.

à Look	at	where	randomness	comes	in	and	identify	concentration	property,	potential	
functions,	or	other	monotone	set	functions	that	implicitly	measure	concentration	of	
some	measure.

2. Apply	the	coupling	lemma
1. Replace	𝑇 round	of	an	adaptive	smoothed	adversary	with	T/𝜎 uniform	R.Vs.
2. Update	the	dependence	of	step	1.1.	for	T/sigma	uniform	R.Vs.

àThe	property	𝑋*, … , 𝑋3 ⊆ 𝑍*… , 𝑍3/; can	only	increases	concentration,	potential	
functions,	or	other	monotone	set	functions.
à 𝑍*… , 𝑍3/; are	uniform,	so	only	moderate	increase	in	concentration,	etc.

3. Put	it	all	back	together,	use	the	original	algorithm	and	analysis	technique.

A	sequence	of	vectors	𝑣*, 𝑣2, … , 𝑣3 from	𝐿2 ball	arrive	online.
At	every	round,	the	algorithm	has	to assign	coefficients	𝛼< = +1 𝑜𝑟 − 1.
Goal:	Keep	the	discrepancy	low	at	every	time	step,

�
<=*

,

𝛼<𝑣<
>

Worst-case	adaptive	adversary	[Spencer	77]:	
• Lower	bound	of	Ω 𝑇
Average	Case	(Uniform	distribution,	fixed	distribution,	oblivious	adversary)	[Bansal-
Spencer	19,	Bansal-Jiang-Singla-Sinha	20,	Alweiss-Liu-Sawhney	20,	…]:	𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛𝑇)

Use	Case	2:	Online	Discrepency Minimiztion

Theorem [H.,	Roughgarden,	Shetty	‘21]:	𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛𝑇/𝜎) for	smoothed	adaptive	+	isotropic
Apply	the	recipe	and	exploit	the	anti-concentration	properties	of	BJSS20 (that’s	monotone	in	
𝑋*, … , 𝑋3 ⊆ 𝑍*… , 𝑍3/;).

There	are	more	use	cases	for	this	recipe:
• HRS21: Online	learning,	online	discrepancy,	data-driven	algorithm	design
• HRS20:	Differential	privacy	using	a	different	technique.

Smoothed	analysis	beyond	runtime	analysis,	understanding	the	fundamental	information	
theoretic	limits	of	learnability.

Open	problems:
• Most	reduction	go	through	computationally	efficient	reduction
• Except	for	online	learning	and	differential	privacy.
à Is	there	a	computational	and	statistical	gap	in	smoothed	analysis?	As	there	is	in	the	worst-
case	setting.

Conclusion

